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ABSTRACT: 

 

The success of radiative transfer model (RTM) inversion strongly depends on various factors, including the choice of a 

suited radiative transfer model, the followed inversion strategy, and the band configuration of the remote sensing system. 

Current study aims at addressing the latter, by investigating the influence of band configuration on the automated 

CRASh RTM inversion approach (Dorigo et al., 2008) which is based on PROSPECT and SAILh. The tested band 

combinations included the configurations of two commonly used hyperspectral (HyMap, CHRIS) and three 

multispectral (Landsat ETM+, SPOT HRV, Quickbird) sensors which, apart from the number of bands, greatly differ in 

the covered spectral range. For the comparison study, reflectance data were taken with an ASD Fieldspec PRO FR field 

spectrometer at various intensively managed grasslands in southern Germany, and measured spectra were resampled to 

the five studied band configurations. Leaf area index, leaf water content, and leaf dry matter content were determined for 

validation purposes.  

 Most accurate inversion results were obtained for the full-range, hyperspectral HyMap configuration, 

shortly followed by the multispectral Landsat ETM+ configuration and at some distance by the SPOT configuration. For 

the studied variables, CHRIS and Quickbird configurations provided clearly less accurate results. The obtained results 

indicate that an even distribution of nearly uncorrelated bands across the entire solar-reflective domain contributes more 

heavily to a robust inversion than a high absolute number of bands in strongly correlating waveband regions, such as 

provided by CHRIS. The inclusion of SWIR bands led to regularization of the leaf water retrievals and hence to 

stabilization of the complete inversion process. The results in this study obtained from measured data may provide an 

important contribution to sensor development studies, which are often based only on simulated data. 
 

                                                                 

*   Corresponding author. 

1. INTRODUCTION 

In recent years, radiative transfer model (RTM) inversion has established itself as a vigorous 

alternative for the characterization of vegetation canopies and found its way into the generation of 

several operationally generated satellite-based products (e.g. Bacour et al, 2006; Knyazikhin et al, 

1999). Various factors are responsible for the success of model inversion. First of all, the choice of 

an adequate model should be considered. The chosen model should be able to accurately describe 

the reflectance of the canopy of interest on the one hand, and not being too complex or requiring too 

many input variables on the other, as the latter may hinder the invertibility of the model. Second, an 

inversion technique should be chosen that is adapted to the requirements regarding processing 

speed, the biophysical and biochemical variables to be provided, and the available a priori 

knowledge. Several techniques are available that all have their advantages and disadvantages in 

specific situations (Dorigo et al., 2007). Adequate parametrization of model parameters and 

constraints during model inversion may help to prevent ill-posed solutions and render the retrieval 

more stable (Combal et al., 2002). Finally, the configuration of the remote sensing system itself or 



the choice of a subset of bands made by the algorithm or user determine to a high agree the output 

accuracy of model inversion.  

 The way in which sensor specifications influence the results are various. The number of 

bands and the distribution of bands across the spectrum primarily affect the amount of available 

spectral information and, hence, the well-determinedness of the inversion problem. Most 

independent spectral information is obtained when the available bands are located at positions in the 

spectrum that are least correlated. In addition, bands should be positioned in wavelength domains 

that are sensitive to changes in the variables of interest. For example, for the detection of canopy 

water at least one band should be situated at a wavelength of 970 nm or more (Jacquemoud and 

Baret, 1990). Band width affects variable retrievals in two ways: on the one hand narrow bands are 

better able to describe distinctive absorption features such as water absorption bands or features 

caused by carbon based absorbing materials such as cellulose and starch (Fourty and Baret, 1997). 

On the other hand, the use of narrow bands may lead to a loss of the signal-to-noise ratio and 

therefore may require a better description of the spectral uncertainty. 

 In the preparation of future satellite missions several studies already addressed the 

importance of sensor configuration on the retrievability of canopy variables by radiative transfer 

model inversion (e.g. Verhoef, 2007). Nevertheless, such studies are generally based on simulated 

data and theoretic sensor properties. The current study can be viewed as complementary to such 

theoretical studies and aims at assessing the influence of the band configurations of five operational 

sensors on radiative transfer model inversion. The tested band combinations included the 

configurations of two commonly used hyperspectral (HyMap, CHRIS) and three multispectral 

(Landsat ETM+, SPOT HRV, Quickbird) sensors which, apart from the number of bands, greatly 

differ in the covered spectral range. 

 

2. METHODS 

2.1 Test site and ground validation measurements 

The study was performed in the catchment of Lake Waging-Taching which is situated in the 

foreland of the Bavarian Alps, close to Salzburg. Within the study area, three agricultural fields (i.e. 

two intensively managed meadows and one intensively used pasture) were selected for detailed 

anaylsis. The three grasslands were sampled by biometric spectroradiometric field measurements at 

June 30 and August 4, 2003. At both dates, the first meadow was characterized by a fully developed 

canopy, while the second meadow had been recently cut and hence contained a considerable amount 

of dry material. During both events the pasture was characterized by alternating densely grazed and 

ungrazed vegetation patches. Five to seven sample plots at each field were selected on a stratified 

basis. At each sample plot an area of 1×1 m
2 

was selected for further analysis. Leaf fresh weight was 

determined by harvesting the total above ground biomass of the square meter while leaf dry weight 

was determined after oven-drying the sample at 70°C for 36 hours. The total amount of water was 

calculated by the difference between fresh and dry leaf weight. Leaf area index (LAI) of the entire 

above ground vegetation of each sample was determined by applying a previously established linear 

relationship between scanned leaf area and wet biomass (see Dorigo (2008) for details). Leaf dry 

matter content (Cdm; g·cm
-2

) and leaf water content (Cw; g·cm
-2

) were calculated by dividing leaf 

dry weight and the total amount of water, respectively, by the LAI (Ceccato et al., 2001). 

  

2.2 Field spectrometer measurements 

Spectral properties of each single plot were measured exactly on the location where subsequently 

the biometric sampling would take place. This enabled a direct comparison between the structural 

and chemical composition of the plots and their spectral properties. Per sample plot, ten 



spectroradiometric measurements were taken using a portable Fieldspec PRO FR spectrometer 

(Analytical Spectral Devices, Inc.). The radiance measurements were directly converted into 

reflectance by taking a Spectralon™ panel as a white reference. The single spectra were corrected 

for the spectral properties of the applied Spectralon panel, deviations of the white reference off the 

100 % reflectance line and spectral jumps between the VNIR and SWIR1 detector (Dorigo et al., 

2006). Subsequently, the average reflectance per sample plot was calculated. Due to technical 

problems with the spectrometer, only 29 plots of the initially 34 sample plots could be used for 

further analysis. 

 To study the influence of spectral band configuration on the performance of radiative 

transfer model inversion, the average ASD Fieldspec spectrum of each plot was resampled to the 

spectral characteristics (including band position and spectral response functions) of five commonly 

used sensors. These included the configurations of two commonly used hyperspectral (HyMap, 

CHRIS) and three multispectral (Landsat ETM+, SPOT HRVIR, Quickbird) sensors which, apart 

from the number of bands, greatly differed in the covered spectral range (Table 1).  

 
Table 1. Spectral configuration of HyMap 2003, CHRIS Mode5, Landsat ETM, Quickbird, and SPOT HRG. 

Sensor Spectral range 

[µm] 

Number of bands Band position (Full width half maximum [nm]) 

Quickbird 0.45 – 0.90 4 485 (70), 560 (80), 660 (60), 830 (140) 

SPOT HRVIR 0.50 – 1.75 4 545 (90), 645 (70), 835 (110), 1665 (170) 

Landsat 7 ETM 0.44 – 2.36  6 478 (71), 570 (80), 662 (61), 874 (126), 1648 

(200), 2224 (280) 

CHRIS Mode 5 0.44 – 1.04 37 Contiguous at 6 - 30 nm distance (6-47) 

HyMap 2003 0.44 – 2.48  126 Contiguous at 13 - 17 nm distance (11-22) 
 

2.3 Radiative transfer model inversion 

Radiative transfer model (RTM) inversion was based on a modified version of the CRASh approach 

(Dorigo, 2008, Dorigo et al., 2007). CRASh is a fully automated image-based approach for the 

simultaneous inversion of the leaf optical model PROSPECT (Jacquemoud and Baret, 1990; Fourty 

et al., 1996) and the 1-D turbid medium canopy structure model SAILh (Verhoef, 1984). Input to 

CRASh is atmospherically corrected top-of-canopy reflectance which is first classified according to 

a rough land cover classification scheme. The land cover classification optimizes the retrieval 

procedure for a restricted variable range and allows the calculation of a variance-covariance matrix 

of the wave bands as an indication of spectral uncertainty. The latter is especially important in the 

case of hyperspectral data where a high correlation exists between the reflectance values in the 

various spectral bands. Model inversion in CRASh is based on lookup tables (LUTs) which are 

automatically generated for each land cover class while taking into account present illumination and 

observation geometry and local background reflectance.  

 In contrast to the full version of CRASh, which also optimizes in the variable space, for 

this study minimization occurred only in the spectral domain. Two cost functions were tested. The 

first cost function was based on the maximum likelihood concept and considers the uncertainty in 

each band independent from that in the other bands: 
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simR are the measured and simulated reflectance in band i, respectively, 2

iσ  is the variance 

in band i, and n is the number of bands. The second cost function also considered the covariance 

between spectral bands: 
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Here, measR  and i

simR are the complete measured and simulated reflectance spectrum, respectively, T 

denotes the transpose, and C is the spectral variance-covariance matrix. Both 2

iσ  in Eq. 1 and C in 

Eq.2 are calculated separately for each land cover class based on the measured spectra attributed to 

that class during classification. 

3. RESULTS AND DISCUSSION 

Figure 1 shows the accuracy of the RTM inversion results expressed as absolute average deviation, 

which is the summation of the absolute value of each deviation divided by the number of samples 

(n=29). Based on the cost function in Eq. 1, differences in retrieval performance between the 

various sensors are largest for Cw. As expected, QuickBird, covering only the visual-near infrared 

(VNIR), performs very poorly, which can be directly ascribed to the absence of bands in wavelength 

regions affected by leaf water absorption. The CHRIS Mode 5 configuration, having a few 

wavebands at the onset of leaf water absorption and a band in the prominent water absorption 

feature around 970 nm, performs better, followed by the sensors having one or more bands in the 

highly sensitive shortwave-infrared (SWIR). Concerning Cdm and LAI, differences between sensor 

configurations are not as obvious as for leaf water content. For these variables HyMap 2003 is the 

best performing configuration followed by the Landsat ETM+ configuration. 

 Introducing the covariance between spectral bands (Eq. 2) has a varying effect on 

retrieval accuracy, depending on the band configuration and the considered variable. For Cw only 

the retrieval accuracy for the SPOT HRVIR configuration is significantly altered. Concerning LAI, 

retrieval accuracy improves for the imaging spectrometers CHRIS and HyMap whereas for the 

multispectral broadband sensors accuracy decreases. This is what is expected for sensors having 

only a few wavebands in different characteristic spectral regions, since correlation between these 

bands is only small and introducing a covariance description based on only a small number of 

observations (3-13 observations per class) may even increase measurement errors and hence the 

inaccuracy of the end product. An opposite effect is observed for Cdm, i.e. improved retrieval 

accuracy for the multispectral sensors whereas the results for the hyperspectral sensors deteriorate. 

Despite this obvious trend, results for Cdm should be taken with precaution as spectral reflectance 

shows only very little sensitivity to changing contents for the cases considered in this study. 

 If we look at the average accuracy of all variables (Fig. 1, lower right) a generally slight 

deterioration can be observed when spectral covariance is accounted for, even for both hyperspectral 

band configurations. The explanation for this has to be sought in the ensemble of variables that is 

accounted for. This is illustrated by Fig. 2 which shows the estimations of leaf chlorophyll content 

(Cab), LAI, and average leaf angle (ALA), with, and without accounting for covariance between 

wavebands. The figure reveals that a shift in the estimated variables also takes place for the 

variables that are not validated in this study. Introducing the covariance description sort of 

redistributes the weights of the single wavebands in the cost function. While some variables take 

advantage of this, for others retrieval accuracy is reduced. The latter is exemplified by the loss of 

accuracy for LAI estimates from multi-spectral band configurations, probably at the benefit of Cab 

estimates which spectrally dominate the visible part of the spectrum.  

 



 
Figure 1. Average absolute deviation (%) as output of radiative transfer model inversion for leaf water 

content (Cw), leaf dry matter content (Cdm), and leaf area index (LAI). The lower right plot shows 

the average of the results of the three varaiables. ML indicates the results obtained using the cost 

function in Eq. 1, COV indicated the result obtained by using the cost function in Eq. 2.  

  

  Regarding the average retrieval accuracy of all considered variables, most accurate 

inversion results were obtained for the full-range, hyperspectral HyMap configuration, shortly 

followed by the multispectral Landsat ETM+ configuration and at some distance by the SPOT 

configuration. For the studied variables, CHRIS and Quickbird configurations provided less 

accurate results. The obtained results indicate that an even distribution of nearly uncorrelated bands 

across the entire solar-reflective domain contributes more heavily to a robust inversion than a high 

absolute number of bands in strongly correlating waveband regions, such as provided by CHRIS. 

The inclusion of SWIR bands seems to lead to a regulation of leaf water retrievals and hence to a 

stabilization of the complete inversion process. 

  



 
Figure 2. Effect of accounting for spectral covariance on estimates of Cab, LAI and ALA. The effect is 

shown for 5 different sensor configurations. The x-axis represents the estimations when the cost 

function of Eq. 1 is used, the y-axis when covariance based on spectra within the land cover classes 

is introduced (Eq. 2) 

 
4. CONCLUSIONS 

In this study we tested the influence of the band configuration (position, band width) on automated 

radiative transfer model inversion using the CRASh module (Dorigo, 2008). For this purpose, the 

band configurations of five operational sensors commonly used for vegetation analysis were 

resampled from field spectra over temperate meadows. The obtained results indicate that an even 

distribution of nearly uncorrelated bands across the entire solar-reflective domain contributes more 

heavily to a robust overall inversion than a high absolute number of bands in strongly correlating 

waveband regions. This notion obtained from measured data may provide an important contribution 

to sensor development studies, which are often based only on simulated data. 
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